
| -∆H means the<br>reaction / process<br>is                                          | Reaction / process<br>where energy is<br>released to the<br>surroundings           | surroundings warm up / reaction "feels hot" means that the reaction is       | Exothermic or endothermic?                             |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|
| exothermic                                                                         | exothermic                                                                         | exothermic                                                                   | exothermic                                             |
| Mg & HCl<br>respiration &<br>combustion<br>are all<br>reactions                    | dissolving NH4Cl<br>&<br>photosynthesis<br>are both<br>processes /<br>reactions    | change of state S → L & L → G are both processes                             | change of state $G 	o L$ & $L 	o S$ are both processes |
| exothermic                                                                         | endothermic                                                                        | endothermic                                                                  | exothermic                                             |
| +∆H means the<br>reaction / process<br>is                                          | Definition:<br>Energy is<br>absorbed from<br>the surroundings                      | surroundings cool<br>down; reaction<br>"feels cold" means<br>the reaction is | Reaction Coordinate  Exothermic or endothermic?        |
| endothermic                                                                        | endothermic                                                                        | endothermic                                                                  | endothermic                                            |
| reactants have<br>more energy than<br>the products; the<br>reaction /process<br>is | reactants have<br>less energy than<br>the products; the<br>reaction /process<br>is | bond making is<br>always (exo or<br>endo?)                                   | bond breaking is<br>always (exo or<br>endo?)           |
| exothermic                                                                         | endothermic                                                                        | exothermic                                                                   | endothermic                                            |



| Pressure (gases)  Greater pressure ⇒ greater rate because there is an increase in the of particle collisions | Temperature Greater temp. Particles have more energy and are moving | Temperature  Greater temp. More collisions more likely to have sufficient energy to overcome the Ea barrier so more collisions/s | Temperature Greater temp.  Molecules collide more frequently AND with greater energy so reaction rate                   |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| frequency                                                                                                    | kinetic<br>faster                                                   | successful /<br>effective                                                                                                        | increases                                                                                                               |
| the fraction of total<br>collisions that<br>actually result in the<br>formation of the<br>product            | if the frequency of effective collisions increases, so does the     | substance that increases the rate of a reaction but is <b>not</b> consumed in the reaction                                       | for reactions,  both forward & reverse reaction rates are affected by the catalyst; Ea for both directions is decreased |
| effective<br>collisions                                                                                      | reaction rate                                                       | catalyst                                                                                                                         | equilibrium /<br>reversible                                                                                             |
| $K_{c} = \frac{\left[NO\right]^{2}}{\left[N_{2}\right]\left[O_{2}\right]}$                                   | $K_{c} = \frac{\left[O_{2}\right]^{3}}{\left[O_{3}\right]^{2}}$     | the Kc expression for the reaction                                                                                               | the Kc expression for the reaction                                                                                      |
| the reaction was                                                                                             | $\begin{bmatrix} O_3 \end{bmatrix}$ the reaction was                | 2NH <sub>3</sub> ⇌ N <sub>2</sub> + 3H <sub>2</sub><br>is                                                                        | $N_2 + 3H_2 \rightleftharpoons 2NH_3$ is                                                                                |
| 2 232 23                                                                                                     | 2 - 3                                                               |                                                                                                                                  |                                                                                                                         |
| the reaction was                                                                                             | the reaction was                                                    | is                                                                                                                               | is                                                                                                                      |

| HCO3 <sup>-</sup> is called<br>as it can<br>both donate and<br>accept H <sup>+</sup> | HCl is a acid and completely dissociates in solution                                                           | CH3COOH is a acid and only partially dissociates in solution                                                              | HA + H <sub>2</sub> O ⇌<br>A <sup>-</sup> + H <sub>3</sub> O <sup>+</sup> |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| amphiprotic                                                                          | strong                                                                                                         | weak                                                                                                                      | weak acid                                                                 |
| a acid  •fully ionises / dissociates in water •reacts completely with water          | a acid  • partially ionises / dissociates in water • reacts incompletely with water                            | Brønsted-Lowry<br>definition of an<br>acid                                                                                | HA + H <sub>2</sub> O →<br>A <sup>-</sup> + H <sub>3</sub> O <sup>+</sup> |
| strong                                                                               | weak                                                                                                           | proton donor                                                                                                              | strong acid                                                               |
| another name for<br>the H <sup>+</sup> ion                                           | the electrical conductivity of HCl will be high, as there will be a large concentration of & ions in solution. | the electrical conductivity of CH3COOH will be very low, as there will be a very low concentration of & ions in solution. | Brønsted-Lowry<br>definition of a<br>base                                 |
| proton                                                                               | H⁺ (or H₃O⁺)<br>and Cl⁻                                                                                        | H⁺ (or H₃O⁺)<br>and CH₃COO⁻                                                                                               | proton acceptor                                                           |
| the of an acid is a measure of its ability to donate hydrogen ion / protons          | the lower the pH, the $\_\_$ the $[H_3O^+]$                                                                    | HCl & CH3COOH of the <u>same conc.</u> & volume will react with the same amount of NaOH / Mg / Na2CO3 as                  | pH = - log [H⁺]                                                           |
| strength                                                                             | higher                                                                                                         | the total amount of $H_3O^+$ ions available in each is the same                                                           | to calculate pH<br>from [H <sup>+</sup> ]                                 |

| [H₃O⁺] = 10 <sup>-pH</sup>                                                                                                               | pH + pOH =                                                                                               | Kw = 1 × 10 <sup>-14</sup><br>is called                                             | [H <sup>+</sup> ][OH <sup>-</sup> ]<br>or<br>[H <sub>3</sub> O <sup>+</sup> ][OH <sup>-</sup> ]<br>= |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Equation to calculate [H₃O⁺] from pH                                                                                                     | 14                                                                                                       | the ionic product<br>for water                                                      | Kw / 1 × 10 <sup>-14</sup>                                                                           |
| = <u>1 × 10<sup>-14</sup></u><br>[OH <sup>-</sup> ]                                                                                      | = <u>1 × 10<sup>-14</sup></u><br>[H <sub>3</sub> O <sup>+</sup> ]                                        | pOH = - log [OH <sup>-</sup> ]                                                      | Concentration of<br>[H₃O⁺] in a strong<br>acid eg HCl is<br>equal                                    |
| [H₃O <sup>+</sup> ]                                                                                                                      | [OH <sup>-</sup> ]                                                                                       | to calculate pOH<br>from [OH <sup>-</sup> ]                                         | to the concentration of the acid (in mol L <sup>-1</sup> )                                           |
| Equilibria increase in [reactant] favours the                                                                                            | Equilibria increase in [product] favours the                                                             | rate of the forward reaction = rate of backward reaction: we call this equilibrium  | Concentration of<br>[OH <sup>-</sup> ] in a strong<br>alkali/base eg<br>NaOH is equal                |
| forward reaction / reaction that uses up the reactant, to minimise the change                                                            | back reaction / reaction that uses up the product, to minimise the change                                | dynamic                                                                             | to the concentration of the alkali/base (in mol L <sup>-1</sup> )                                    |
| increase in pressure causes equilibrium to shift to the no. of <b>gaseous</b> particles, shifts eqm. to side with number of moles of gas | decrease in temp. causes an equilibrium shift to favour reaction that energy, ie shift in the direction. | endothermic reactions will be favoured by temperatures but the reaction rate is too | endothermic reactions producing a sufficiently high % product in a short time requires a ———         |
| reduce<br>least/smaller                                                                                                                  | releases<br>exothermic                                                                                   | low<br>slow                                                                         | compromise temp.<br>(less % product &<br>fast reaction rate)                                         |

| $\Delta_{ m r}$ H                           | solution containing<br>the NH4 <sup>+</sup> ion would be<br>a weak as NH4 <sup>+</sup><br>is a proton | solution containing the CH3COO-ion would be a weak as CH3COO- is a proton                       | equation for HCO3 <sup>-</sup> acting as a base is                     |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| enthalpy change<br>for the reaction         | acid<br>donor                                                                                         | base<br>acceptor                                                                                | $HCO_3^- + H_2O \Rightarrow H_2CO_3 + OH^-$                            |
| conjugate acids<br>and bases differ<br>by a | the conjugate acid<br>of NH₃ is                                                                       | the conjugate acid of HCO3 <sup>-</sup> is                                                      | the conjugate<br>base of HCO₃⁻ is                                      |
| proton / H⁺                                 | NH₄⁺                                                                                                  | H₂CO₃                                                                                           | CO3 <sup>2-</sup>                                                      |
| the conjugate<br>base of CH₃COOH<br>is      | the conjugate<br>base of H₂O is                                                                       | equation for<br>CH₃COO <sup>-</sup> acting<br>as a base is                                      | 2.86 × 10 <sup>-13</sup> is<br>given to s.f.                           |
| CH₃COO⁻                                     | OH-                                                                                                   | CH <sub>3</sub> COO <sup>-</sup> + H <sub>2</sub> O ⇌<br>CH <sub>3</sub> COOH + OH <sup>-</sup> | 3                                                                      |
| write pH 3.467 to<br>3 s.f.                 | write pH 3.5 to 3<br>s.f.                                                                             | entering a number<br>like 1.25 x 10 <sup>-3</sup> in<br>calculator                              | writing a number<br>like 3.4562E-04as<br>seen in calculator<br>to 3 sf |
| 3.47                                        | 3.50                                                                                                  | 1 . 2 5 EXP (-) 3                                                                               | 3.46 × 10 <sup>-4</sup>                                                |